Gaia spectroscopy overview and Comparative Spectrum Modelling for Cool Giants

Ulrike Heiter Uppsala University

Outline

- Gaia overview RVS and RP/BP instruments and simulated data
- Apsis purpose and performance examples
- Synthetic spectra grid examples
- Comparative spectrum modelling experiment for two benchmark stars – cool giants

Gaia overview

Gaia's astrometric field + radial velocity spectrometer + photometric instrument will obtain positions, space motions, and **physical parameters** for 1 billion stars

Gaia spectroscopic instruments

- Radial Velocity Spectrometer RVS
 - wavelength range 847–874 nm (Call IR triplet and Paschen lines)
 - resolution (R = $\lambda/\Delta\lambda$) **11 500** for V \leq 12, **5 500** for V \geq 12
 - SNR >200, 100, 10 at V= 9, 12, 15
- Red and Blue Photometer RP/BP
 - two prism spectra at low resolution (~4 30 nm/pixel)
 - wavelength range 330 680 nm and 640 1000 nm

Gaia instruments

Gaia instruments

Gaia torus and "Folding-Optics Structure"

GREAT

Ulrike Heiter, GREAT-ESF Workshop, June 2011

EADS

SAS

Astrium

RVS grating + prism + lens

Ulrike Heiter, GREAT-ESF Workshop, June 2011

Astrium

Simulated data – RVS – for late-type stars

Ulrike Heiter, GREAT-ESF Workshop, June 2011

Simulated data – RVS – for late-type stars

Ulrike Heiter, GREAT-ESF Workshop, June 2011

Gaia data processing – Apsis

- Astrophysical parameters inference system (Gaia DPAC CU8 software)
- Will classify all sources –> probabilities for being a star, galaxy, quasar, etc.
- Will **determine astrophysical parameters** for stars: T_{eff} , log *g*, metallicity, extinction, α elements, ...
- General Stellar Parametrizer for RP/BP and RVS:
 GSP-phot and GSP-spec
- Trained on model stellar spectra

GSP-phot performance example

- ILIUM algorithm (Bailer-Jones 2010, MNRAS 403, 96)
- Best case, T_{eff} + log g: estimated minus true APs for 137 simulated stars at G=15 without extinction

• In general, for variable extinction and G=15 and 18.5: T_{eff} : ±3 to 13%, log g: ±0.3 to 1.1, [Fe/H]: ±0.5 to 1.3

GSP-spec performance example – high *R*

Apsis depends on synthetic spectra grids

• e.g. MARCS, Gustafsson et al. (2008) http://marcs.astro.uu.se

MARCS grid in RVS region

Comparison of different grids – RVS

Exploring effect of spectrum modelling on stellar parameters for cool giants

- GREAT-ESF Workshop on Comparative Stellar Spectrum Modelling held Aug 2010 in Vienna Organizers: Thomas Lebzelter, Ulrike Heiter
- Observed optical spectra of two benchmark stars and two simulated H-band spectra were analysed by 14 groups using different models and analysis approaches
- Resulting parameters T_{eff}, log g, [Fe/H] cluster around the "true" values within ~100 K, ~0.5 dex, ~0.4 dex

Stellar data and parameters

• Stellar spectra

- α Tau and α Cet at R=80 000 from 490 to 975 nm
- "Star 3 and 4" at R=50 000 from 1546 to 1567 nm
- Approximate broad-band colors provided

 $\sigma(0.5\theta_{\mathrm{L}})$

 Fundamental parameters for α Tau and α Cet from measured angular diameter, bolometric flux, parallax, mass

Ulrike Heiter, GREAT-ESF Workshop, June 2011

g

Participating groups

Name et al.	Institute	Μ	Stars	Name et al.	Institute	Μ	Stars	
Nowotny	Vienna	Μ	12	Maldonado	Madrid	А	12	EW
Plez	Montpellier	Μ	12	Neilson	Bonn	А	34	
Worley	Nice	Μ	12	Peterson	UCO/Lick	А	1	
Eriksson	Uppsala	Μ	1	Goswami	India	A	1	EW
Abia	Granada	Μ	34	Short	Halifax	Ρ	12	
Merle	Nice	Μ	1	Ireland	Sydney	С	24	
Wahlgren	GSFC	А	1 3	Tsuji	Tokyo	Т	4	EW

Chi-square analysis of α Tau with MARCS

One of the models (best fit) for α Tau at IR Ca triplet line

PHOENIX O–C for whole α Tau spectrum

grey – model grid black – best fit model

Ulrike Heiter, GREAT-ESF Workshop, June 2011

GR

Model differences for spectra with equal parameters, but different model atmospheres, line lists, and line formation

Model differences at 886 nm

logg

G

Best-fit model spectrum for Star 4

Conclusions

- Experiment illustrates the need to be cautious when comparing or combining stellar parameters from different model atmospheres and analysis strategies
- No systematic differences between "model families" (MARCS, ATLAS, ...) are apparent
- No clear trends for effect of given assumption could be derived due to complexity of problem
- Experiment represents a typical situation in observational astrophysics and provides a snapshot of the current status of this field

