# Abundance Analyses of Post-AGB Stars With Disks

### Nadya Gorlova Institute of Astronomy, Leuven Univ., Belgium

Within the framework of the HERMES Binary Survey: H. Van Winckel, R. Oestensen, K. Exter (IVS, KU Leuven)
A. Jorissen, S. Van Eck (Universitee Libre de Bruxelles)
G. Van de Steene (Royal Observatory of Belgium)

#### The Sample: post-AGB Giants with Dusty Disks





#### Spectra:

#### HERMES fiber echelle spectrograph with an image slicer on Mercator 1.2m telescope (La Palma)

R~85,000, Δλ=3800 - 9000A

*Raskin et al. 2010, A&A, 526, 69* http://www.mercator.iac.es/instruments/hermes/

#### Goals:

RV monitoring for binarity Physical parameters (T<sub>eff</sub>, logg, V<sub>micro-tur</sub>) Chemical composition





# Plan of the Talk

Solar abund: phot. from Grevesse et al. 1996 ASPC 99,117

### Example case: BD +46 442 <u>F2-5 III</u> V=9.5<sup>m</sup> <u>S/N~130</u>

- 1. Teff
- logg, Vtur, [Fe/H]
   [X/H]

### Analyses Tools:

<u>EW</u> analyses with MOOG by C. Sneden <u>http://www.as.utexas.edu/~chris/moog.html</u> & ATLAS9(2003) by R. Kurucz & F. Castelli http://wwwuser.oat.ts.astro.it/castelli/grids.html

4. Comparing with WIDTH9 and Atlas9(1992)

http://wwwuser.oat.ts.astro.it/castelli/sources/width9.html

5. Solar oscillator strengths (loggf)

Extended list of V. Kovtyukh & S. Andrievsky *1999 A&A 351, 597* (KA99), based on solar phot. Abs. of Grevesse et al. 1996 ASPC 99,117

Methods of Teff determination that Did Not Work for Our Star

Spectral energy distribution:

Near-IR and possibly a UV excess

IS+CS reddening is expected  $\longrightarrow$ Av vs Teff degeneracy



Methods of Teff determination that Did Not Work for Our Star

Removing trend of abundance vs the lower excitation level for FeI lines:

Teff too high for the SpT:  $>7500 \text{ K} \longrightarrow \text{NLTE}$  effects at low logg?



# Methods of Teff determination that Did Not Work for Our Star



#### Line depth ratio:

*Kovtyukh et al.* 2007 MNRAS 378, 617 F-K – supergiants 2006 MNRAS 371, 879 F-K – giants 2003 A&A 411, 559 F-K – dwarfs

→ Lines too weak, low metallicity?





### Teff from Hydrogen Lines

Hβ  $H\gamma$  $H\alpha$ Hδ Ν  $\phi$ 13 3.00 3 2.02 0 4 2.02 14 3.12 21 5.13 15 3.18 -2 5 2.19 22 5.19 6 2.24 -47 2.30 8 2.48 Relative Flux 9 2.52 -623 5.52 16 4.58 17 4.61 -8 18 4.66 24 5.66 10 2.70 11 2.72 -1012 2.72 25 5.72 1.81 1 -12 2 1.89 19 4.92 20 4.94 -14 100 -400-300-200-100 0 100 -400-300-200-100 0 100 -400-300-200-100 0 100 -400-300-200-100 0  $V_{Helio}$ , km/s



# Teff from Hydrogen Lines: Comparison With Synthetic Profiles



#### Coelho et al. 2005 A&A, 443, 735 R=85,000

Munari et al. 2000 A&A 141, 141 R=20,000

9

http://www.mpa-garching.mpg.de/PUBLICATIONS/DATA/SYNTHSTELLIB/synthetic\_stellar\_spectra.html http://vizier.u-strasbg.fr/viz-bin/VizieR-4?-source=III/238

# Teff from Hydrogen Lines: Comparison With Synthetic Profiles

*Teff* = 6250 ± 250*K*, *logg* < 3



Coelho et al. 2005 A&A, 443, 735 R=85,000

Munari et al. 2000 A&A 141, 141 R=20,000

<u>http://www.mpa-garching.mpg.de/PUBLICATIONS/DATA/SYNTHSTELLIB/synthetic\_stellar\_spectra.html</u> http://vizier.u-strasbg.fr/viz-bin/VizieR-4?-source=III/238

# Circumstellar components in strong lines



# Circumstellar components in strong lines



Lines with EW<300mA are free from the CS features. we use EW<170 mA





Teff=6200K, logg=3.0, vtur=8.0 km/s

### Using FeI, FeII lines for Teff, logg, Vmicro-tur, [Fe/H]



Teff=6200K, logg=3.0, vtur=8.0 km/s

## Using FeI, FeII lines for Teff, logg, Vmicro-tur, [Fe/H]

Teff = 6250 K



#### Vmicro-tur Discrepancy between FeI and FeII



*Kovtyukh & Andrievsky 1999, A&A, 351, 597* δ Cep 5760/2.1/3.5

Vmicro-tur Discrepancy between FeI and FeII in <u>supergaints:</u>

Use all FeII lines and FeI lines <50mA !



Takeda et al. 2007 PASJ 59, 1127

# Using FeI, FeII lines for Teff, logg, Vmicro-tur, [Fe/H]



# Run with EW for other elements: whenever trend, use EW<50mA



#### Derived Abundances of BD+46 442

as a Function of the Condensation Temperature



A weak depletion or a moderately metal-poor star with [M/H] = -0.8?

# "Abundogram" - a 2d Represenation of the Chem. Composition





### **Comparing Codes and Atmospheric Models:**

MOOG vs. WIDTH9 Atlas9(1992) vs. Atlas9-Castelli(2003)

*Teff / logg / vtur / M/H=6250 / 2.0 / 5.0 / 0.0* 

MOOG+Castelli vs WIDTH9+Atlas9









Castelli - Atlas : up to -0.15 dex, MOOG - WIDTH9 : up to  $\pm 0.05$  dex

Nadya Gorlova (KU Leuven) Brussels 23 June 2011

# Abundance Analyses relative to the Sun





# Abundance Analyses relative to the Sun





# Abundance Analyses relative to the Sun



corr-s: from -0.08 for CrII to +0.07 for SiII ; most uncertain: C,N,O,S (most loggfs non-solar)

# Summary

#### Used:

HERMES spectrum S/N~130, R=85,000 of a SB1, F2III, IRAS source <u>BD+46 442</u> MOOG + Atlas9-Castelli (EW mode) Solar loggfs of KA99

#### Obtained:

Teff =  $6250 \pm 250$  K logg =  $1.5 \pm 0.5$ Vmicro-tur =  $4.0 \pm 0.5$ [Fe/H] =  $-0.80 \pm 0.08$ [X/H] for 21 other elements, weak trend with Tcond 
$$\begin{split} H_{\beta}, H_{\gamma}, H_{\delta}, Pa_{14}, Pa_{17} (Coelho \ et \ al, \ Munari \ et \ al.) \\ <& FeII> = FeI \ (EW \rightarrow 0) \\ no \ trend \ FeII \ vs. \ EW \\ <& FeII> = FeI \ (EW \rightarrow 0) \\ <& X/H> \ or \ <& X/H \ (EW <& 50mA)> \end{split}$$

#### Compared:

Castelli vs Atlas9 : up to -0.15 dex for logg=1.5, ±0.1 dex for the Sun (logg=4.4)

MOOG vs WIDTH9: differences smaller

The above justifies the solar loggf approach at least for EW<100 mA, except for C,N,O loggf-s: may be uncertain up to 0.6 dex