High-precision stellar parameter and abundance determinations OB dwarfs and BA supergiants

Fernanda Nieva MPI for Astrophysics, Garching Germany

Norbert Przybilla, Andreas Irrgang Bamberg Observatory, Germany

Overview

- OB dwarfs and BA supergiants
- The models (spectrum synthesis)
- The analysis
- Parameter vs. NLTE-effects
- Consequences for stellar evolution
- Consequences for Galactic evolution

OB dwarfs: progenitors of BA supergiants

 radiative envelope thin atmosphere (1D)

in contrast to cool stars: \rightarrow no convective envelope (3D) \rightarrow no chromosphere (heating)

absolute chemical composition (independently from solar values)

Our contribution

Improvement of the spectral modeling (NLTE) Talk N. Przybilla

Improvement of the spectral analysis (self consistent)

Investigation of >20 systematic effects involved in chemical abundance determinations

NEW:

Computation of large grids and implementation of a "well-trained" automatic fitting procedure to analyse numerous stars

The models

Classical model atmospheres

plane-parallel, hydrostatic & radiative equilibrium, LTE

Non-LTE line formation

radiative transfer & statistical equilibrium

- Level populations: DETAIL
- Formal solution: SURFACE (Giddings, 1981; Butler & Giddings 1985; updated by K. Butler, LMU)

Hybrid non-LTE approach: Good approximation! (Nieva & Przybilla 2007)

Green: species implemented in NLTE in DETAIL & SURFACE (model atoms tested!)

Figure 2.5: Schematic periodic system, indicating the current status of the spectrum synthesis computations with DETAIL/SURFACE. Elements which are implemented in non-LTE are marked in green (see Table 2.1), those in LTE in blue. For each element, the first to fourth ionization potential (in eV, Cox 2000; NIST) is given.

Table 2.1: Non-LTE model atoms for use with DETAIL/SURFACE

lon	Source	Ion	Source
H	Przybilla & Butler (2004a)	Mg1/I1	Przybilla et al. (2001a)
He I/II	Przybilla (2005)	Al III	Dufton et al. (1986)
Cт	Przybilla et al. (2001b)		Si 11/111/1V Przybilla & Butler (in prep.)
	C11/111/1V Nieva & Przybilla (2006, 2008)	S II/III	Vrancken et al. (1996), updated
N1/II	Przybilla & Butler (2001)	Ca I/II	Mashonkina et al. (2007)
OI	Przybilla et al. (2000)	Ti п	Becker (1998)
Oп	Becker & Butler (1988), updated	Fe II	Becker (1998)
Ne I/II	Butler (in prep.)	Fe III	Przybilla (2008) Butler (in prep.)

The analysis

Self-consistent spectral analysis

Simultaneous reproduction of all spectroscopic indicators

Solution: precise values of T_{eff} log g microturbulence v sin i elemental abundances

But also: distances masses luminosities bolometric corrections Why do we need more than 1 ionization equilibrium to derive Teff, and microturbulence (and logg) simultaneously ?

Nieva (2007), PhD Thesis

Global fit to all modeled lines

Nieva & Przybilla (2011) Nieva & Simon-Diaz (2011)

Global fit to all modeled lines

• several 10^4 lines: \sim 30 elements, 60+ ionization stages

• complete spectrum synthesis in visual (& near-IR) ~70-90% in NLTE

Parameter vs. NLTE effects

Teff scales

Our approach (several ionization equilibria) vs. Literature (photometric & spectroscopic)

Atmospheric parameter vs. non-LTE effects

(for this example) $T_{\text{eff}} >$ non-LTE effects!

Consequences for stellar evolution

Stellar Evolution

Observational constraints on the (magneto-)hydrodynamic mixing of CNO-burning products in massive stars

Nieva & Przybilla (2011)

In the Main Sequence, the slope depends only on the initial abundance, regardless on any other ingredient of the models (mass, rotational velocity, etc.)

Stellar Evolution

Observational constraints on the (magneto-)hydrodynamic mixing of CNO-burning products in massive stars

Nieva & Przybilla (2011)

In the Main Sequence, the slope depends only on the initial abundance, regardless on any other ingredient of the models (mass, rotational velocity, etc.)

A global fit to a spectrum from the Massive Star FLAMES Survey using parameters and abundances from Hunter et al. (2009)

Consequences for Galactic evolution

Galactic Chemical Evolution

OB stars: end point of GCE models

Galactic Chemical Evolution

OB stars: end point of GCE models

Galactic Chemical Evolution OB stars: end point of GCE models

Galactic Chemical Evolution OB stars: end point of GCE models

To take home

• **A careful spectral analysis is as important as a proper spectrum modeling**

• **Then, we can learn about stellar and Galactic evolution**

• **We can analyse many more stars at similar precision with a "well-trained" automatic fitting procedure**

• **Shortcomings like in the recent analyses from the Massive Stars Flames Survey (e.g. Hunter et al.) could be avoided in the next GAIA science**

A present-day cosmic abundance standard

Nieva & Przybilla (2011)

Chemical homogeneity $(\sim 10\%) = ISM!$

Recommended mass fractions:

 $X = 0.715$, $Y = 0.271$, and $Z = 0.014$ **≠ 0.020!**

Systematics from atomic data Consistent non-LTE vs. 'erroneous' non-LTE

C II λ 4267 Å very sensitive to non-LTE C II λ 5145 Å not sensitive to non-LTE.

Metals in Solar Neighbourhood/Star Clusters

uncertainty Fernanda Nieva (MPA) and Abundance Standard Science Day, 09.05.11

Observational constraints on the (magneto-)hydrodynamic mixing of CNO-burning products in massive stars

Literature

Observational constraints on the (magneto-)hydrodynamic mixing of CNO-burning products in massive stars

Przybilla, Firnstein, Nieva, Meynet, Maeder (2010, A&A)

