High-precision stellar parameter and abundance determinations OB dwarfs and BA supergiants

Fernanda Nieva MPI for Astrophysics, Garching Germany

Norbert Przybilla, Andreas Irrgang Bamberg Observatory, Germany

Overview

- OB dwarfs and BA supergiants
- The models (spectrum synthesis)
- The analysis
- Parameter vs. NLTE-effects
- Consequences for stellar evolution
- Consequences for Galactic evolution

OB dwarfs: progenitors of **BA** supergiants

 \rightarrow radiative envelope \rightarrow thin atmosphere (1D)

in contrast to cool stars:
→ no convective envelope (3D)
→ no chromosphere (heating)

absolute chemical composition (independently from solar values)

Our contribution

Improvement of the spectral modeling (NLTE) Talk N. Przybilla

Improvement of the spectral analysis (self consistent)

Investigation of >20 systematic effects involved in chemical abundance determinations

NEW:

Computation of large grids and implementation of a "well-trained" automatic fitting procedure to analyse numerous stars

The models

Classical model atmospheres

plane-parallel, hydrostatic & radiative equilibrium, LTE

Non-LTE line formation

radiative transfer & statistical equilibrium

- Level populations: DETAIL
- Formal solution: SURFACE (Giddings, 1981; Butler & Giddings 1985; updated by K. Butler, LMU)

Hybrid non-LTE approach: Good approximation! (Nieva & Przybilla 2007)

Green: species implemented in NLTE in DETAIL & SURFACE (model atoms tested!)

Figure 2.5: Schematic periodic system, indicating the current status of the spectrum synthesis computations with DETAIL/SURFACE. Elements which are implemented in non-LTE are marked in green (see Table 2.1), those in LTE in blue. For each element, the first to fourth ionization potential (in eV, Cox 2000; NIST) is given.

Table 2.1: Non-LTE model atoms for use with DETAIL/SURFACE

lon	Source	Ion	Source
Н	Przybilla & Butler (2004a)	Mg1/11	Przybilla et al. (2001a)
He I/11	Przybilla (2005)	Al III	Dufton et al. (1986)
CI	Przybilla et al. (2001b)	Si II/III/IV	Przybilla & Butler (in prep.)
CII/III/IV	Nieva & Przybilla (2006, 2008)	S 11/111	Vrancken et al. (1996), updated
N I/11	Przybilla & Butler (2001)	Ca I/II	Mashonkina et al. (2007)
01	Przybilla et al. (2000)	Ti II	Becker (1998)
011	Becker & Butler (1988), updated	Fe II	Becker (1998)
Ne I/II	Butler (in prep.)	Fe III	Butler (in prep.) Przybilla (2

The analysis

Self-consistent spectral analysis

Simultaneous reproduction of all spectroscopic indicators

	HD	$T_{\rm eff}$	Η	Heı	Неп	Сп	Сш	Cıv	0101	Nei	Neп	Sims	Sirv	FeпI	⁷ еш
	10 ³ K														
11	36512	33.4	•	•	٠	٠	٠	٠	•		•	•	٠		•
6	149438	32.0	•	٠	٠	٠	٠	•	•	٠	•	•	•		•
3	63922	31.2	•	•	٠	•	٠	•	•		•	•	•		•
19	34816	30.4	•	٠	•	•	٠		•	٠	•	•	•		•
12	36822	30.0	•	٠	•	•	•	•	•	•	•	•	•		•
13	36960	29.0	•	٠	•	•	٠		•	٠	•	٠	٠		•
1	36591	27.0	•	٠	•	•	٠		•	•	•	•	•		•
14	205021	27.0	•	•	•	•	٠		•	•	•	•	•		•
2	61068	26.3	•	•	•	•	٠		•	•	•	•	•		•
9	35299	23.5	•	•		٠	٠		• •] 🔹	•	٠	٠	٠	•
16	216916	23.0	•	•		•	٠		• •	•	٠	•	•	•	•
4	74575	22.9	•	•		•	٠		• •	•	٠	•	•	•	•
7	886	22.0	•	•		•	٠		• •	•		•	•	•	•
8	29248	22.0	•	•		•	٠		• •	•		•	•	•	•
18	16582	21.0	•	•		•	٠		• •	•		•	•	•	•
5	122980	20.8	•	•		•	٠		• •	•		•		•	•
10	35708	20.7	•	•		٠	٠		• •	•		٠	٠	٠	٠
17	3360	20.7	•	•		٠	٠		• •	• [•	•	•	٠
20	160762	17.5	•	•		•			• •	• [•		•	•
15	209008	15.8	•	•		•			• •	•		•		٠	•

Solution: precise values of T_{eff} log g microturbulence v sin i elemental abundances But also:

But also: distances masses luminosities bolometric corrections Why do we need more than 1 ionization equilibrium to derive Teff, and microturbulence (and logg) simultaneously ?

Nieva (2007), PhD Thesis

Global fit to all modeled lines

1.1

₹ ₹ ٩₹ ₩ ₹ ٩Ĩ ٩Ī 99 ¶ HD35299 (B1.5 V) ٩ ^{\$}, ٩٩ ٩ 羺 1.1 - 1.0 - .9 -ŧ ΞŦ z ŝ 9 99 **8**5

Nieva & Przybilla (2011) Nieva & Simon-Diaz (2011)

Global fit to all modeled lines

• several 10⁴ lines: \sim 30 elements, 60+ ionization stages

• complete spectrum synthesis in visual (& near-IR) \sim 70-90% in NLTE

Parameter vs. NLTE effects

T_{eff} scales

Our approach (several ionization equilibria) vs. Literature (photometric & spectroscopic)

Atmospheric parameter vs. non-LTE effects

 $T_{\rm eff} \geq \text{non-LTE effects!}$ (for this example)

Consequences for stellar evolution

Stellar Evolution

Observational constraints on the (magneto-)hydrodynamic mixing of CNO-burning products in massive stars

Nieva & Przybilla (2011)

In the Main Sequence, the slope depends only on the initial abundance, regardless on any other ingredient of the models (mass, rotational velocity, etc.)

Stellar Evolution

Observational constraints on the (magneto-)hydrodynamic mixing of CNO-burning products in massive stars

Nieva & Przybilla (2011)

In the Main Sequence, the slope depends only on the initial abundance, regardless on any other ingredient of the models (mass, rotational velocity, etc.)

A global fit to a spectrum from the *Massive Star FLAMES Survey* using parameters and abundances from Hunter et al. (2009)

Consequences for Galactic evolution

Galactic Chemical Evolution

OB stars: end point of GCE models

Galactic Chemical Evolution

OB stars: end point of GCE models

Galactic Chemical Evolution OB stars: end point of GCE models

Galactic Chemical Evolution OB stars: end point of GCE models

To take home

• A careful spectral analysis is <u>as important</u> as a proper spectrum modeling

• Then, we can learn about stellar and Galactic evolution

• We can analyse <u>many</u> more stars at similar precision with a "<u>well-trained</u>" automatic fitting procedure

• Shortcomings like in the recent analyses from the *Massive Stars Flames Survey* (e.g. Hunter et al.) could be avoided in the next GAIA science

A present-day cosmic abundance standard

Nieva & Przybilla (2011)

Chemical homogeneity ($\sim 10\%$) = ISM !

Recommended mass fractions:

 $X = 0.715, Y = 0.271, \text{ and } Z = 0.014 \neq 0.020!$

Systematics from atomic data **Consistent non-LTE vs. 'erroneous' non-LTE**

C II λ4267 Å very sensitive to non-LTE <u>C II λ 5145 Å **not sensitive** to non-LTE</u>

Metals in Solar Neighbourhood/Star Clusters

Fernanda Nieva (MPA)

uncertainty Uncertainty

Science Day, 09.05.11

Stellar Evolution

Observational constraints on the (magneto-)hydrodynamic mixing of CNO-burning products in massive stars

Literature

Stellar Evolution

Observational constraints on the (magneto-)hydrodynamic mixing of CNO-burning products in massive stars

Przybilla, Firnstein, Nieva, Meynet, Maeder (2010, A&A)

HD T _{eff} H He 10 ³ K	е іНе п С п С ш С	οι Οι Οπ	NeiNen SimSirv	FenFem
11 36512 33.4 • •	• • •	• •	• • •	•
6 149438 32.0 • •	• •	• •	•• ••	•
3 63922 31.2 • •	• •	• •	• • •	•
19 34816 30.4 • •	• • •	•	•• ••	•
12 36822 30.0 • •	•••	• •	$\overline{\mathbf{\cdot \cdot \cdot}}$	•
13 36960 29.0 •	•••	•	$\overline{}$	•
1 36591 27.0 • •		•	$\overline{}$	•
14 205021 27.0 • •	•••	•	$\overline{}$	•
2 61068 26.3 • •	•••	•	$\overline{}$	•
9 35299 23.5 • •	• •	• •	$\cdot \cdot \cdot$	• •
16 216916 23.0 • •	• •	• •	$\overline{}$	• •
4 74575 22.9 • •	• •	• •	$\cdot \cdot \cdot$	• •
7 886 22.0 • •	• •	• •	• • •	• •
8 29248 22.0 • •	• •	• •	• ••	• •
18 16582 21.0 • •	• •	• •	• ••	• •
5 122980 20.8 • •	••	• •	• •	• •
10 35708 20.7 • •	• •	• •	• • •	• •
17 3360 20.7 • •	••	• •	• • •	• •
20 160762 17.5 • •	•	• •	• •	• •
15 209008 15.8 • •	•	• •	• •	• •

Fits to all modeled lines

