

VLT FLAMES Tarantula Survey

Alex de Koter

Evans (PI), Bagnoli, Bastian, Beletsky, Bestenlehner, Bonanos, Bressert, Brott, Campbell, Cantiello, Clark, Costa, Carraro, Crowther, de Koter, de Mink, Doran, Dufton, Dunstall, Friedrich, Garcia, Gieles, Gräfener, Hénault-Brunet, Herrero, Howarth, Izzard, Kunz, Langer, Lennon, Maiz Apellániz, Markova, Najarro, Puls, Ramirez, Sabín-Sanjulían, Sana, Simón-Diaz, Smartt, Stroud, Taylor, Trundle, van Loon, Vink, Walborn

New stellar populations [..] will be discovered, and fundamental questions such as the basic scenarios of stellar evolution will be addressed with Gaia data. Contemporary theoretical models of highresolution stellar spectra are however seriously hampered by systematic uncertainties due to inadequate input physics and inaccurate or incomplete atomic data.

- The VLT/FLAMES Tarantula Survey
- Model atmospheres & fitting techniques
- Predictions of massive star evolution
- □ First results

VLT FLAMES Tarantula Survey

Evans et al. (2011)

- Multi-epoch spectroscopy of 1,000 most massive stars in 30 Dor
- Testing stellar and cluster evolution
 - Census of nearest "mini-starburst"
 - Binary fraction & period distribution
 - Test of single and binary evolution, including effects of massloss and rotation
 - Cluster dynamics, mass segregation and infant mortality
- ESO Large Programme (160hrs) & HST Programmes (110hrs)

Spatial distribution of Spectral Types

Spatial distribution of O-type binaries

Multi epochs for binary detection

Giraffe setting	λ-coverage	R	Epocs	Exposures
LR2*	3980-4550	7,000	6	2x1815s
LR3	4505-5050	8,000	3	2x1815s
HR15N	6470-6790	17,000	2	2x2265s

- binary detection: 5 epochs < 4 months, 1 one yr later
- P < 100d 90% complete; P~1yr 50%; P<1000d ~20%

O stars, S/N >70-100, up to 500 for brightest targets

Interesting O-star categories

Category	#		
O2	3		
O3	6		
Ofnp	4		
llln/nn	7		
Vn/nn/nnn	17	← More frequent in rur	aways
Vz	35! + 10?		
O3.5-7 V((fc))	10! + 3?		
O3.5-7 V((f))	8		
O3.5-7 V high SNR No N III, C III emission lines	6		
O8-O9.5 with He II broader than He I	5		
		Stellar Atmospheres in the Gaia	Era 7

Ň

Interesting O-star categories

O-star binaries

Category	ΔRV	#	fraction f
SB1+SB2	>30	60+51	0.34
Good cand.	20-30	11	0.03
Weak cand.	10-20	22	0.07
Single	<10	178	0.55
Total		322	1
Rejected		24	

Obs. biases	true f
+0.12	0.46

Most missing systems have P > 1 yr

9

Sana et al. in prep.

Stellar Atmospheres in the Gaia Era

10

Spectral analysis: genetic algorithm fitting technique

Mokiem et al. 2005, Charbonneau 1995

Spectral analysis: test of GA method using synthetic data

Parameter	<obs-comp></obs-comp>	dispersion	
Teff	-0.09	0.40 kK	
log g	-0.00	0.03	
log d <i>M</i> /dt	0.05	0.09	
β	0.04	0.05	
Y	0.00	0.01	
V _{turb}	0.0	2.2 km/sec	

11

Stellar Atmospheres in the Gaia Era

Spectral analysis: test of GA method using synthetic data

Parameter	<obs-comp></obs-comp>	dispersion
Teff	-0.09	0.40 kK
log g	-0.00	0.03
log d <i>M</i> /dt	0.05	0.09
β	0.04	0.05
Y	0.00	0.01
V _{turb}	0.0	2.2 km/sec

	♦ Late MS △ Mid MS □ Early MS + Late SG × Early SG × High Y/Mdot • v sini=300 • v sini=100 • v sini=50
Stellar Atmospheres in the Gaia Era	12

Spectral analysis: test of GA method using synthetic data

Parameter	<obs-comp></obs-comp>	dispersion
Teff	-0.09	0.40 kK
log g	-0.00	0.03
log d <i>M</i> /dt	0.05	0.09
β	0.04	0.05
Y	0.00	0.01
V _{turb}	0.0	2.2 km/sec

	♦ Late MS △ Mid MS □ Early MS + Late SG × Early SG * High Y/Mdot • v sini=300 • v sini=100 • v sini=50
peres in the Gaia Fra	

Stellar Atmospl

- Rapidly rotating stars
- □ Abundances of N, C, O (fastwind)
- □ Macro- or "extra" broadening
- □ Clumping & porosity
- □ "Binarity"
- □ Extinction, nebular contamination

- Rapidly rotating stars
- □ Abundances of №, C, O (fastwind)
- Macro- or "extra" broadening
- Clumping & porosity
- □ "Binarity" SB1, SB2
- □ Extinction, rebular contamination

Main sequence evolution of rotating massive s

Main sequence evolution of rotating massive stars in GAL, LMC, SMC environments

- □ 5-60 *M*_☉ Brott et al. (2011a)
- □ 60-300 M_{\odot} Friedrich et al. (in preparation)

Main sequence evolution of rotating massive stars in GAL, LMC, SMC environments

- □ 5-60 *M*_☉ Brott et al. (2011a)
- \square 60-300 M_{\odot} Friedrich et al. (in preparation)

Overshooting calibration

Mixing par. & baseline N abund. calibration

Stellar Atmospheres in the Gaia Era

Serendipitous discoveries: R139

- The most massive double-"normal" O binary (O6.5 lafc + Of laf) known, with $M \sin^3 i = 78 \pm 8 M_{\odot}$ and $M \sin^3 i = 66 + 7 M_{\odot}$
- Providing an excellent test for atmospheric and evolutionary models

Serendipitous discoveries: WN5h star 682

Bestenlehner et al. 2011

- Exceptionally massive WN5h star ($M_{init} \sim 200 \text{ M}_{\odot}$); the first one of this type to be found outside of a massive young cluster
- Spectroscopic "twin" of R136a3 ($M_{init} \sim 320 M_{\odot}$), the most massive star known

Quantitative IR spectral analysis of O V stars

Arjen Stap (masterstudent UvA) - see poster

Quantitative IR spectral analysis of O V stars

Object	Spect.	Spect.	$\mathbf{T}_{ ext{eff}}$	$\log(\mathbf{g})$	Ņ	${ m n}_{ m He}/{ m n}_{ m H}$	$\mathbf{V}_{\mathrm{rot}}$
	region	type	[K]	$[\mathrm{cm/s^2}]$	$[M_{\odot}yr^{-1}]$		[km/s]
HD93250	IR	O4V	43400^{+2550}_{-2900}	$3.84^{+0.07}_{-0.12}$	$-6.70^{+0.35}_{-0.75}$	$0.09^{+0.02}_{-0.04}$	126^{+58}_{-46}
	optical	031	44200 -1150	$3.69_{-0.02}^{+0.02}$	$-5.75_{-0.00}$	$0.07_{-0.01}$	138_{-10}^{+-}
HD46150*	IR	O4V	43750_{-1250}	$3.78\substack{+0.26\\-0.07}$	$-5.80^{+0.10}_{-0.40}$	$0.10^{+0.17}$	70^{+94}_{-46}
	optical	O5V	41500^{+600}_{-550}	$3.84^{+0.06}_{-0.01}$	$-5.95^{+0.05}_{-0.05}$	$0.07^{+0.01}_{-0.00}$	120^{+4}_{-8}
HD54669*	IR	O5.5V	39650^{+1300}_{-1900}	$4.05_{-0.30}^{}$	$-6.70^{+0.40}_{-0.70}$	$0.07^{+0.12}_{}$	78^{+78}_{-22}
11D04002	optical	O7V	37300^{+1100}_{-150}	$3.73_{-0.05}^{+0.12}$	$-6.45_{-0.30}^{+0.10}$	$0.08^{+0.02}_{-0.02}$	126^{+14}_{-16}
*	IR	O6V	38450^{+600}_{-100}	$3.83^{+0.02}_{-0.06}$	$-6.80^{+0.15}_{-0.00}$	$0.08^{+0.01}_{-0.02}$	76^{+18}_{-8}
Tablon	optical	O6V	38600^{+150}_{-100}	$3.90\substack{+0.03\\-0.00}$	$-6.70^{+0.00}_{-0.00}$	$0.05^{+0.00}_{}$	60_{-8}^{+6}
11072000	IR	O7.5V	$36300^{+1600}_{}$	$3.28^{+0.12}_{-0.17}$	$-6.20^{+0.10}_{-0.25}$	$0.06^{+0.09}_{}$	232^{+98}_{-102}
HD73882	optical	O8.5V	33750^{+1600}_{-150}	$3.43_{-0.01}^{+0.14}$	$-6.55^{+0.20}_{-0.20}$	$0.09\substack{+0.02 \\ -0.03}$	202^{+4}_{-16}

Quantitative IR spectral analysis of O V stars

 $\Delta T_{\rm eff} \le 2,000 \ {\rm K}$

 $\Delta \log g \le 0.15 \, \mathrm{dex}$

 $\Delta \log dM/dt \le 0.3 dex$

Conclusions

- VLT FLAMES Tarantulara Survey largest homogeneous study of O
 & early-B stars to date → serendipitous discoveries
- Improvements in model atmospheres & fitting methods allow for comprehensive test of theory of massive star evolution, though serious problems remain (including mass discrepancy)
- GA fitting method used to analyse IR spectra of OV stars yields promising results