Workshop Summary

GREAT-ESF Workshop

Stellar Atmospheres in the Gaia Era:

Quantitative Spectroscopy and Comparative Spectrum Modelling

Free University Brussels - VUB Building D Campus Oefenplein 23 & 24 June 2011

http://great-esf.oma.be

Great.esf@oma.be

SOC:

- J. Groh (MPI, Bonn, Germany)
- P. Hauschildt (Obs. Hamburg, Germany)
- U. Heiter (Univ. Uppsala, Sweden)
- A. Lobel (Royal Obs. of Belgium, Brussels)
- B. Plez (Univ. Montpellier, France)
- N. Przybilla (Obs. Bamberg, Germany)
- R. Sordo (INAF Padova, Italy)

LIROPEAN

DCIENCE

LOC:

Vrije

Universiteit

J.-P. De Greve (VUB) A. Lobel (ROB) W. van Rensbergen (VUB)

Wrapping up a spectacular meeting...

JANAL PROVIDENT

XXXXXXXXXXXXXXXX

In a nutshell...

- 1. Spectrum Synthesis Codes
- 2. Radiation Hydrodynamics Codes
- 3. Atmospheric Parameters, Abundance,
- Metallicity, & Chemical Tagging Studies
- 4. Large Surveys
- 5. Atomic Database www.vamdc.eu

1. Spectrum Synthesis Codes

Hot Stars

- ATLAS9/SYNTHE vs. TLUSTY/SYNSPEC or LTE vs. Non-LTE (Przybilla)
- CMFGEN non-LTE, full line blanketing, photosphere & wind in massive OB stars (Groh, Mahy P6)
- FASTWIND non-LTE fitting high-res. spectra of Galactic massive OB stars (de Koter, Stap P7)

Cool Stars

- PHOENIX/1D general purpose model atmosphere code (with nonequil. dust formation in L, M Dwarfs) & PHOENIX/3D mode (Hauschildt)
- MARCS code for cool stars models and spectra (Plez)
- ATLAS9/WIDTH9 & MOOG LTE codes for EW analysis in post-AGB stars (Gorlova)

For the Gaia Mission

Overview of Libraries of Synthetic spectra for Gaia (Sordo) Implemented in the "Stellar Population Code" to train Gaia algorithms. Stellar spectra computed with PHOENIX/1D, MARCS, TLUSTY/SYNSPEC, CMFGEN, ATLAS, BaSel, ...

Synthetic Spectral Libraries for Gaia

Stellar type	T _{eff} [K]	logg	[Fe/H]	Provider/code
WD Stars	6,000-90,000	7 - 9		Koester/TMAP
sdOB Stars	26,000-100,000	4.8 - 6.4	+0.0	Heber
OB Stars	15,000-50,000	1 - 5	+0.0-+0.3	Ghost/Tlusty
BAF Stars	6,000-16,000	2.5 - 4.5	-1.5 - +1.0	Kochukhov/LL
Ap Stars	6,500-18,000	1 - 5		Kochukhov/LL
F-M Stars	4,000-8,000	-0.5 - 5.5	-5.0 - +1.0	Gustafsson/Marcs (BP/RP)
F-M Stars	2,800-8,000	-0.5 - 5.5	-5.0 - +1.0	deLaverny/Marcs (RVS)
A-M Stars	3,000-10,000	-0.5 - 5.5	-2.5 - +0.5	Hauschildt/Phoenix
NLTE Cool Stars	4,000-6,000	4.5 - 5.5	+0.0	Korn/Marcs+Multi (RVS)
C Stars	4,000-8,000	0 - 5	-5.0 - +0.0	Plez/Marcs
Emission line stars	25,000-50,000	3 - 5		Fremat,Blomme
Ultra Cool Dwarfs	100-4,000	2.5 - 5.5	+0.0	Allard/Phoenix
Fast Rotators	9,000-25,000	3.6-4.2	+0.0	Fremat/Zorec/Martayan
WR	25,000-100,000	3.0-5.2	+0.5	Blomme/CMFGEN
Red Super Giants	3,500-4,200	-1 – 1	+0.0	Josselin/MARCS
O-M stars	3,500-47,500	0 - 5	-2.5 - +1.0	Munari,Sordo /Kurucz

R. Sordo et al. Feb. 2010, Astrophys Space Sci

High-Res. Synthetic Spectral Libraries for Gaia

COOL STARSTeff < 15,000 K, var. [Fe/H]</th>MARCSvar. indiv. α abund.PHOENIX var. [α/Fe]ATLASLTEC starsvar. [C/Fe]Ultra-cool dwarfsdustAp/Bpnon-solar abund.

HOT STARS Teff > 15,000 K

- O, B non-LTE, mass-loss, winds
- Be variable envelope radius
- W-R variable mass-loss rates
- sdOB non-LTE
- WD LTE

Model Grids may overlap and interpolation methods are required

PHOENIX 1D vs 3D: 9000K

• **3-D** fully line blanketed stellar spectrum synthesis is a computational challenge!

In more detail...

HOT DWARFS & GIANTS 15,000 K ≤ Teff ≤ 35,000 K

- atmospheric structures: very close to LTE $\Delta T/T(NLTE-LTE) \le 1\%$
- SEDs: NLTE modelling required Ly-/He-continua
- line spectra: LTE assumption highly limited
 NLTE limited because of model atom implementations
- available LTE & NLTE grids NOT suited to reproduce observed spectra over extended wavelength regions, but useful for selected lines
- <u>alternative</u>: <u>hybrid NLTE-modelling with tailored model atoms</u>
- limitations: breakdown of hydrostatic approximation for hotter stars
 & some supergiants

ATLAS9/SYNTHE & TLUSTY/SYNSPEC (Przybilla, Nieva, & Butler)

Fig.9. Upper panel: Comparison of ATLAS9 and TLUSTY temperature structures and electron densities (insets) as function column mass. The computations have been performed for giant and dwarf models. Lower panel: Comparison of spectral energi distributions, the radiation field computed by DETAIL on the basis of the ATLAS9 atmospheric structure vs. TLUSTY.

Hybrid-NLTE for HOT DWARF

Fig. 10. Comparison of the most discrepant hydrogen and He I/II line profiles from our hybrid non-LTE approach (ADS) and a TLUSTY-DS calculation for a hot main-sequence model. Practically perfect agreement is obtained, with small discrepancies occurring only in the wings of He II λ 4686 Å.

4680

λ (Å)

4682

4924

ATLAS+DETAIL+SURFACE

4686

4684

4688

4690

.6

= 35000 K, log q = 4.5

4922

4920

MASSIVE OB STARS

- 1-D, spherically-symmetric, NLTE, simultaneous treatment of photosphere & wind, full line blanketing (large database of atomic data, metals up to Z=30), wind clumping, X-rays.
- Main limitation: momentum balance equation of the wind is not solved; velocity law has to be assumed a priori, but can be constrained from line profiles.

New updates of CMFGEN & time-dependent winds (Groh & Vink 2011)

 Multi-wavelength analyses of massive hot stars in different evolutionary stages:

In more detail...

COOL GIANTS

- Observed spectra α Tau and α Ceti modelled by 14 groups with different models and analysis approaches
- Resulting parameters Teff, log g, [Fe/H] vary by 200 K, 0.1, 0.5 dex for α Tau

One of the models (best fit) for α Tau at IR Ca triplet line

Model differences for spectra with equal parameters, but different model atmospheres, line lists, and line formation

Comparison of Atmosphere Models

FIGURE 4. Comparison of the temperature structure of model stellar atmospheres computed by the spherical ATLAS code and PHOENIX NextGen models for two gravities $\log g = 0.5$, 1.0. (Left) The models have an effective temperature of 3400 K and mass of $5M_{\odot}$. (Right) The models have an effective temperature of 3800 K and mass of $5M_{\odot}$.

- Comparison of S-ATLAS, PHOENIX/1D, and MARCS spherical symmetry atmosphere models of cool giants show only small differences that do not explain SED differences.
- What causes the differences of synthetic fluxes? What assumptions are different?

Phoenix ATLAS (PP)

Comparison of Synthetic Spectra in RVS

Figure 7: Comparison in the RVS range for PHOENIX, MARCS and C libraries for having T_{eff} =4000 K, $\log g$ =4.0, [Fe/H]=+0.0. From upper to lower panel: source spectra (to the MARCS); GOG output spectra; residuals of the spectra to the MARCS.

COOL DWARFS

MARCS (Plez) PHOENIX (Hauschildt)

Differences can be due to: LTE vs non-LTE 1-D vs 3-D Sampling meth of opacities and fluxes

but also the Radiative Transfer Input: Atomic and molecular line lists Predicted lines vs. observed lines Equation of state (di+ molecules, TiO, FeH) Partition functions (hydrides, ions) Line oscillator strengths; log(gf) Line damping coefficients & broadening tsotopic lines (log(gf) components) Hyperfine splitting (Mn, Co, etc.)

Vallenari & Sordo, 2008, Gaia-TN

Improve Ca II collisional broadening data in PHOENIX?

FGK STARS

- NLTE abundance corrections for Fe I lines in large-scale simulations
- NLTE corrections increase with smaller [Fe/H] and log g.
 LTE assumption may underestimate gravities and metallicities.

Figure 1: NLTE abundance corrections as a function of [Fe/H] for different model atmospheres. Left panel: $T_{\text{eff}} = 5000 \text{ K}$, and $\log g = 2.2, 3.6$. Right panel: $T_{\text{eff}} = 5000, 5400, 5800, 6200 \text{ K}$, and $\log g = 4.6$.

2. Radiation Hydrodynamics Codes

- Stagger-Code (StaggerGrid project) grids of time-dep, 3-D, hydro model atmospheres and applied to line formation calculations without micro- and macroturbulence. In cool metal-poor stars of [Fe/H] = -3 3-D oxygen abundance is 0.5 dex smaller than in 1-D.
- CO5BOLD code for time-dep, 3-D, hydro convective envelope effects on parallax and Δ Rad Vel ~1 km/s in K Giants, <4 km/s in Red SG)

3. Atmosph. Parm. & Adundance Studies

FGK STARS

- Gaia Data Processing and Analysis Consortium
 DPAC
 Group: Generalized Stellar Parametrizer spectroscopy
 GSP-Spec
- Automated determination of Teff, log g, [M/H], and elm. abundances using MATISSE & DEGAS codes

Performance in RVS for R=11500

SNR = 50

- Δ Teff ~ 100 K
- ∆ log g ~ 0.2-0.3 dex
- Δ [M/H] ~ 0.15 dex
- Δ [α /H] ~ 0.1 dex

```
(Recio-Blanco)
```

Chi square method of synth. spectra & Classification decision tree

Generalized Stellar Parametrizer-spectroscopy and the CaII range :Internal errors: Different methods depending on the SNR.MATISSEDEGAS

FGK STARS accurate determination of log g

- CoRoT & Kepler sample of 30 G Dwarfs & Red Giants with SEISMIC log g
- log g from fitting strong lines agree within 0.06 dex, but σ < 0.14 dex

POST-AGB STARS determination of elm. abundances

- individual abundances from WIDTH9 and MOOG codes using EW of weak and strong lines in high-res. Mercator-HERMES spectra
- NLTE effects in Fe I and Fe II lines yield different microturbulence velocity in F-G supergiants. Abundance values agree for weaker lines.

Metallicity diagram without averaging = 'abundogram'

FGK STARS membership to Moving Groups

- atmospheric parameters Teff, log g, microturbulence velocity, & [Fe/H] from StePar code using EW values and imposing ionization equilibrium with log(ε(Fe I)) = log(ε(Fe II)).
- [Fe/H] used for studying candidate membership of Hyades Supercluster with respect to [Fe/H] of known cluster member

Study of metallicity and Li abundance of Hyades Stream compared to Hyades Cluster

Stream has metallicity excess 0.2 dex compared to thin disc

Stream is a 4:1 resoncance of the spiral pattern? (Jorissen P11)

[Fe/H] of Cool Dwarfs vs Giants in Clusters

- Are there effects of stellar evolution and input line lists on metallicity, or clear example of important NLTE effects between dwarfs and giants?
- May influence Galactic chemical evolution, planet formation rate, ...

[Fe/H] for a sample of cool stars w/o dusty debris discs

- atm. parms. from high-res. spectra forcing Fe I/Fe II ionization balance
- distribution helps understanding of planet formation. Gaia will detect 10,000 exoplanets

[Tc/Zr] in S-type AGB STARS (0.5 < C/O < 1.0)

- to constrain nucleosynthesis & evolutionary models w STAREVOL code
- envelope model of S-process enrichment over AGB phase compared to Tc abundances from optical Tc I lines
- size of partial mixing zone varied to fit observations with [Zr/Fe]~1 dex

• Grid of S-stars MARCS models to find Teff, [C/O], [s/Fe] with VJHKL photometry & spectroscopy

• Teff scale for M-stars from V-K not valid for S stars and gives errors < 400 K (Van Eck P1)

HOT STARS OB DWARFS

- increase of surface C & N abundance over time with [O/H]
- smaller spread in abundances of B-stars with better spectral modelling

HOT STARS O STARS

• N surface abundance in young open cluster NGC 2244 consistent with ages of 1 to 5 Myr from CMFGEN models (Mahy P6)

4. Large Surveys

- Gaia-ESO Survey with VLT FLAMES will observe spectra of 200k stars with hot massive stars in selected clusters
- 300 nights over 5 yr to support/complement Gaia data
- WP definition busy for calibrating, analysis, & interpretation of hot stars

• Survey of 150 Be stars shows that P13 - P16 emission are proxies of H α emission stronger than 1.5. Paschen line with RVS, while H α only observed with Rp.

(Koubsky P9)

 Surveys on plates (Low Dispersion Sky) can be used as true simulators of Bp/Rp data. Many objects with prominent spectral features.

- LAMOST Survey will observe a 10⁶ stars.
- Teff, log g, metallicity determined from libraries of model spectra from MAFAGS code and KURUCZ ODF spectra.
- ALHAMBRA Photometric System for stellar classification (Aparicio Villegas)

- Survey of 150 200 Galactic O stars in IACOB project for automated finding of Teff log g, Y(He) with high-res. spectra using the FASTWIND code in non-LTE.
 (Simon-Diaz)
- Tarantula Survey with VLT-FLAMES of 800 massive stars in LMC to study stellar and cluster evolution. Modelling of O-stars with FASTWIND code for classification and quantitative analyses. (de Koter)
- near-IR VLT-CRIRES spectra (JHKL bands) of nearby massive stars. Quantitative analysis with FASTWIND for stellar & wind properties.

(Stap P7)

 4MOST proposed as large int. collaboration to go 2 -3 mag. fainter than Gaia with multi-fiber ground-based spectroscopy of millions of stars of SNR=20 for large facilities NTT, VISTA. Approved for study by ESO. High-res R=20000 & 300 fibers; Low-res 1500 fibers R=3000 (red) to R=5000 (blue). Role of stellar migration for the formation of the thick and thin disc. (Quirrenbach)

CONCLUSION

- GET READY FOR GAIA, A TREMENDOUS BOOST FOR STELLAR PYHSICS!
- WE HAVE IMPORTANT WORK TO DO AND TO SHOW THE SCIENTIFIC COMMUNITY WE ARE HANDLING IT ALL TOGETHER
- GET INVOLVED AND GET TO WORK

Proceedings: Submission deadline: 31 Aug Use online JPCS LaTeX template Submit PDF to Great.esf@oma.be

> Invited: **12 pages** Contributed: **8 pages** Posters: **8 pages**

Expected publication date: Dec 2011

Thanks Bedankt Merci Danke

Goodbye Tot ziens Au revoir Auf Wiedersehen

Many thanks to all participants and ...

